direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

TU Berlin

Inhalt des Dokuments

Prof. Dr. Henning Sprekeler

Henning Sprekeler


Technische Universität Berlin & Bernstein Center for Computational Neuroscience Berlin

Fak. IV - Elektrotechnik und Informatik

Modelling of Cognitive Processes



Raum MAR 5.009

Tel.: +49 30 314 24390


Office hours (with appointment):
Mondays, 4.00 to 5.00 p.m.




Research Interests

We investigate the neuronal basis of cognitive abilities such as perception, learning and memory, and decision making. To this end, we use mathematical and computational methods to bridge gaps between the microscopic level of synapses, neurons and neuronal networks and the cognitive level. A particular focus lies on how changes on the neuronal level — for example synaptic plasticity — allow our brain to dynamically adjust to environmental requirements.


  • Bernstein Award for Computational Neuroscience 2011, German Federal Ministry of Education and Research
  • Humboldt-Award for Outstanding Dissertation 2008, Humboldt-University Berlin

To top

Research Projects

  • The functional and computational role of various types of interneurons in a neural network. (Together with Loreen Hertäg)
  • The interaction of global reward signals with local learning rules and their impacts on cognition. (Together with David Higgins)
  • How different kinds of inhibitory plasticity affect dynamics and information processing in recurrent networks. (Together with Owen Mackwood)
  • Computational models of presynaptic inhibition. (Together with Laura Naumann)
  • Interplay between action and perception in reinforcement learning agents. (Together with Mathias Schmerling)
  • The consequences of long-range top down connections on local network dynamics including 1) dendritic processes, 2) interneuron circuits and 3) synaptic mechanisms. (Together with Filip Vercruysse)
  • The effects of inhibitory plasticity on adaptive sensory and spatial processing. (Together with Simon Weber)

To top


Models of Higher Brain Functions
Cognitive Neuroscience
Theoretical Lecture
Analytical Tutorial
Programming Tutorial

Offered each summer term.

This module is compulsory for students enrolled in the Master program Computational Neuroscience.
Module components are compulsory elective or elective for students of other Master and Diploma programs of Berlin’s universities, who wish to specialize in the Cognitive Neurosciences.

See also: www.bccn-berlin.de/Graduate+Programs/0_Teaching/Courses+and+Modules/



Current Topics in Computational Neuroscience

Offered in both summer and winter term.

This module is targeted at master students and researchers in the field of computational neuroscience. Mathematical skills and a basic familiarity with neuroscientific concepts are an advantage. 

Please enroll in the moodle: Link


Theoretische Grundlagen der Informatik
Vorlesung mit Übung

Dieser Kurs wird jedes Semester angeboten.

Er richtet sich primär an Bachelor- Studenten der Wirschaftsinformatik und Technischen Informatik.

Hier finden Sie den ISIS-Link: Link

To top



  • R. Naud, H. Sprekeler
    Burst Ensemble Multiplexing: A Neural Code Connecting Dendritic Spikes with Microcircuits
    bioRxiv, doi.org/10.1101/143636
  • S.N. Weber, H. Sprekeler
    Learning place cells, grid cells and invariances: A unifying model 
    bioRxiv, doi.org/10.1101/102525
  • C. Clopath, T.P. Vogels, R.C. Froemke, H. Sprekeler
    Receptive field formation by interacting excitatory and inhibitory synaptic plasticity 
    bioRxiv, doi.org/10.1101/066589



  • A. Kutschireiter, S.C.  Surace, H.  Sprekeler, J.P.  Pfister (2017)
    Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
    Scientific Reports 7, Article number: 8722 (2017), doi:10.1038/s41598-017-06519-y
  • H. Sprekeler (2017)
    Functional consequences of inhibitory plasticity: homeostasis, the excitation-inhibition balance and beyond
    Current Opinion in Neurobiology 43, 198-203
  • N. Chenkov, H. Sprekeler, R. Kempter (2017)
    Memory replay in balanced recurrent networks
    PLoS Comput Biol 13(1): e1005359
  • K.A. Wilmes, H. Sprekeler, S. Schreiber (2016)
    Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons
    PLoS Computational Biology, 12(2), e1004768
  • T. D'Albis, J. Jaramillo, H. Sprekeler, R. Kempter (2015)
    Inheritance of Hippocampal Place Fields Through Hebbian Learning: Effects of Theta Modulation and Phase Precession of Structure Formation
    Neural Computation, 27(8), 1624-1672
  • H. Sprekeler, T. Zito and L. Wiskott (2014)
    An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation
    Journal of Machine Learning Research 15, 921-947
  • N. Fremaux, H. Sprekeler, W. Gerstner (2013)
    Reinforcement Learning using a Continuous Time Actor-Critic Framework with Spiking Neurons
    PLoS Computational Biology, 9(4): e1003024
  • V. Pawlak, D. S. Greenberg, H. Sprekeler, W. Gerstner, J. Kerr (2013)
    Changing the responses of cortical neurons from sub- to supra-threshold using single spikes in vivo
    eLife 2013;2:e00012
  • J. Rüter, H. Sprekeler, W. Gerstner, M. H. Herzog (2012)
    The silent period of evidence integration in fast decision making
    PloS One 8(1):e46525
  • W. Gerstner, H. Sprekeler, G. Deco (2012)
    Theory and simulation in neuroscience
    Science 338:60-65
    pdf on the Science website
  • M. H. Herzog, K. C. Aberg, N. Fremaux, W. Gerstner, H. Sprekeler (2012)
    Perceptual learning, Roving & the Unsupervised Bias
    Vision Research, 61:95-99
    pdf available online
  • T. Vogels*, H. Sprekeler*, F. Zenke, C. Clopath and W. Gerstner (2011)
    Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks
    Science, 334:1569-1573
    look here for a pdf
  • J. Rüter, N. Marcille, H. Sprekeler, W. Gerstner and M. Herzog (2011)
    Paradoxical evidence integration in rapid decision processes
    PLoS Computational Biology, 8(2):e1002382
  • H. Sprekeler (2011)
    On the Relation of Slow Feature Analysis and Laplacian Eigenmaps
    Neural Computation 23:3287-3302
  • H. Sprekeler and L. Wiskott (2011)
    A Theory of Slow Feature Analysis for Transformation-Based Input Signals
    with an Application to Complex Cells

    Neural Computation 23:303-335
  • N. Fremaux*, H. Sprekeler* and W. Gerstner (2010)
    Functional Requirements for Reward-modulated Spike Timing-Dependent Plasticity
    Journal of Neuroscience 30:13326-13337
  • L. Wiskott, P. Berkes, M. Franzius, H. Sprekeler and N. Wilbert (2010)
    Slow Feature Analysis
    Scholarpedia, 6(4):5282
  • H. Sprekeler, G. Hennequin and W.Gerstner (2009)
    Code-Specific Policy-Gradient Rules for Spiking Neurons
    Advances in Neural Information Processing Systems 22 (NIPS 2009)
  • F. Creutzig and H. Sprekeler (2008)
    Predictive Coding and the Slowness Principle: An Information-Theoretic Approach
    Neural Computation 20:1026-41
  • M. Franzius*, H. Sprekeler* and L. Wiskott (2007)
    Slowness and Sparseness lead to Place, Head-Direction and Spatial-View Cells
    PLoS Computational Biology, 3(8):e166
  • H. Sprekeler, C. Michaelis and L. Wiskott (2007)
    Slowness: An Objective for Spike-Timing-Dependent Plasticity?
    PLoS Computational Biology 3(6):e112
  • G. Kießlich, H. Sprekeler, A. Wacker, and E. Schöll (2004)
    Positive Correlations in Tunneling through coupled Quantum Dots
    Semiconductor Science and Technology 19, S 37
    (pdf on cond-mat)
  • H. Sprekeler, G. Kießlich, A. Wacker, and E. Schöll (2004)
    Coulomb Effects in Tunneling through a Quantum Dot Stack
    Phys. Rev. B 69, 125328
    (pdf on cond-mat)

To top

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions


Cathrin Bunkelmann
Modelling of Cognitive Processes
Building MAR
Room 5011
030 - 314 73557

Tue - Thur 9.00-15.00

Mailing Address

Technische Universität Berlin
Modelling of Cognitive Processes
Institute of Software Engineering and Theoretical Computer Science
sec. MAR 5-3
Marchstr. 23
10587 Berlin