direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

TU Berlin

Inhalt des Dokuments

Prof. Dr. Henning Sprekeler

Henning Sprekeler
Lupe [1]


Technische Universität Berlin & Bernstein Center for Computational Neuroscience Berlin [2]

Fak. IV - Elektrotechnik und Informatik

Modellierung Kognitiver Prozesse



Raum MAR 5.009

Tel.: +49 30 314 24390

h.sprekeler@tu-berlin.de [3]


Sprechstunde (nach Anmeldung):
Dienstag, 14.15 -15.00 Uhr




  • Forschungsinteressen
  • Awards
  • Aktuelle Projekte
  • Lehre
  • Publikationen


We investigate the neuronal basis of cognitive abilities such as perception, learning and memory, and decision making. To this end, we use mathematical and computational methods to bridge gaps between the microscopic level of synapses, neurons and neuronal networks and the cognitive level. A particular focus lies on how changes on the neuronal level — for example synaptic plasticity — allow our brain to dynamically adjust to environmental requirements.


  • Bernstein Award for Computational Neuroscience 2011, German Federal Ministry of Education and Research
  • Humboldt-Award for Outstanding Dissertation 2008, Humboldt-University Berlin

Nach oben

Aktuelle Projekte

  • The functional and computational role of various types of interneurons in a neural network. (Together with Loreen Hertäg)
  • The interaction of global reward signals with local learning rules and their impacts on cognition. (Together with David Higgins)
  • How different kinds of inhibitory plasticity affect dynamics and information processing in recurrent networks. (Together with Owen Mackwood)
  • Computational models of presynaptic inhibition. (Together with Laura Naumann)
  • Interplay between action and perception in reinforcement learning agents. (Together with Mathias Schmerling)
  • The consequences of long-range top down connections on local network dynamics including 1) dendritic processes, 2) interneuron circuits and 3) synaptic mechanisms. (Together with Filip Vercruysse)
  • The effects of inhibitory plasticity on adaptive sensory and spatial processing. (Together with Simon Weber)

Nach oben


Models of Higher Brain Functions
Cognitive Neuroscience
Theoretical Lecture
Analytical Tutorial
Programming Tutorial

Offered each summer term.

This module is compulsory for students enrolled in the Master program Computational Neuroscience.
Module components are compulsory elective or elective for students of other Master and Diploma programs of Berlin’s universities, who wish to specialize in the Cognitive Neurosciences.

See also: www.bccn-berlin.de/Graduate+Programs/0_Teaching/Courses+and+Modules/ [4]



Current Topics in Computational Neuroscience

Offered in both summer and winter term.

This module is targeted at master students and researchers in the field of computational neuroscience. Mathematical skills and a basic familiarity with neuroscientific concepts are an advantage. 

Please enroll in the moodle: Link [5]


Theoretische Grundlagen der Informatik
Vorlesung mit Übung

Dieser Kurs wird jedes Semester angeboten.

Er richtet sich primär an Bachelor- Studenten der Wirschaftsinformatik und Technischen Informatik.

Hier finden Sie den ISIS-Link: Link [6]

Nach oben



  • R. Naud, H. Sprekeler
    Burst Ensemble Multiplexing: A Neural Code Connecting Dendritic Spikes with Microcircuits
    bioRxiv, doi.org/10.1101/143636
    pdf [7]
  • S.N. Weber, H. Sprekeler
    Learning place cells, grid cells and invariances: A unifying model 
    bioRxiv, doi.org/10.1101/102525 [8]
    pdf [9]
  • C. Clopath, T.P. Vogels, R.C. Froemke, H. Sprekeler
    Receptive field formation by interacting excitatory and inhibitory synaptic plasticity 
    bioRxiv, doi.org/10.1101/066589 [10]
    pdf [11]



  • A. Kutschireiter, S.C.  Surace, H.  Sprekeler, J.P.  Pfister (2017)
    Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
    Scientific Reports 7, Article number: 8722 (2017), doi:10.1038/s41598-017-06519-y
    pdf [12]
  • H. Sprekeler (2017)
    Functional consequences of inhibitory plasticity: homeostasis, the excitation-inhibition balance and beyond
    Current Opinion in Neurobiology 43, 198-203
    pdf [13]
  • N. Chenkov, H. Sprekeler, R. Kempter (2017)
    Memory replay in balanced recurrent networks
    PLoS Comput Biol 13(1): e1005359
    pdf [14]
  • K.A. Wilmes, H. Sprekeler, S. Schreiber (2016)
    Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons
    PLoS Computational Biology, 12(2), e1004768
    pdf [15]
  • T. D'Albis, J. Jaramillo, H. Sprekeler, R. Kempter (2015)
    Inheritance of Hippocampal Place Fields Through Hebbian Learning: Effects of Theta Modulation and Phase Precession of Structure Formation
    Neural Computation, 27(8), 1624-1672
    pdf [16]
  • H. Sprekeler, T. Zito and L. Wiskott (2014)
    An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation
    Journal of Machine Learning Research 15, 921-947
    pdf [17]
  • N. Fremaux, H. Sprekeler, W. Gerstner (2013)
    Reinforcement Learning using a Continuous Time Actor-Critic Framework with Spiking Neurons
    PLoS Computational Biology, 9(4): e1003024
    pdf [18]
  • V. Pawlak, D. S. Greenberg, H. Sprekeler, W. Gerstner, J. Kerr (2013)
    Changing the responses of cortical neurons from sub- to supra-threshold using single spikes in vivo
    eLife 2013;2:e00012
    pdf [19]
  • J. Rüter, H. Sprekeler, W. Gerstner, M. H. Herzog (2012)
    The silent period of evidence integration in fast decision making
    PloS One 8(1):e46525
    pdf [20]
  • W. Gerstner, H. Sprekeler, G. Deco (2012)
    Theory and simulation in neuroscience
    Science 338:60-65
    pdf [21] on the Science website
  • M. H. Herzog, K. C. Aberg, N. Fremaux, W. Gerstner, H. Sprekeler (2012)
    Perceptual learning, Roving & the Unsupervised Bias
    Vision Research, 61:95-99
    pdf available online [22]
  • T. Vogels*, H. Sprekeler*, F. Zenke, C. Clopath and W. Gerstner (2011)
    Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks
    Science, 334:1569-1573
    look here [23] for a pdf
  • J. Rüter, N. Marcille, H. Sprekeler, W. Gerstner and M. Herzog (2011)
    Paradoxical evidence integration in rapid decision processes
    PLoS Computational Biology, 8(2):e1002382
    pdf [24]
  • H. Sprekeler (2011)
    On the Relation of Slow Feature Analysis and Laplacian Eigenmaps
    Neural Computation 23:3287-3302
    pdf [25]
  • H. Sprekeler and L. Wiskott (2011)
    A Theory of Slow Feature Analysis for Transformation-Based Input Signals
    with an Application to Complex Cells

    Neural Computation 23:303-335
    pdf [26]
  • N. Fremaux*, H. Sprekeler* and W. Gerstner (2010)
    Functional Requirements for Reward-modulated Spike Timing-Dependent Plasticity
    Journal of Neuroscience 30:13326-13337
    pdf [27]
  • L. Wiskott, P. Berkes, M. Franzius, H. Sprekeler and N. Wilbert (2010)
    Slow Feature Analysis
    Scholarpedia, 6(4):5282
    link [28]
  • H. Sprekeler, G. Hennequin and W.Gerstner (2009)
    Code-Specific Policy-Gradient Rules for Spiking Neurons
    Advances in Neural Information Processing Systems 22 (NIPS 2009)
    pdf [29] 
  • F. Creutzig and H. Sprekeler (2008)
    Predictive Coding and the Slowness Principle: An Information-Theoretic Approach
    Neural Computation 20:1026-41
    pdf [30]
  • M. Franzius*, H. Sprekeler* and L. Wiskott (2007)
    Slowness and Sparseness lead to Place, Head-Direction and Spatial-View Cells
    PLoS Computational Biology, 3(8):e166
    pdf [31]
  • H. Sprekeler, C. Michaelis and L. Wiskott (2007)
    Slowness: An Objective for Spike-Timing-Dependent Plasticity?
    PLoS Computational Biology 3(6):e112
    pdf [32]
  • G. Kießlich, H. Sprekeler, A. Wacker, and E. Schöll (2004)
    Positive Correlations in Tunneling through coupled Quantum Dots
    Semiconductor Science and Technology 19, S 37
    (pdf on cond-mat) [33]
  • H. Sprekeler, G. Kießlich, A. Wacker, and E. Schöll (2004)
    Coulomb Effects in Tunneling through a Quantum Dot Stack
    Phys. Rev. B 69, 125328
    (pdf on cond-mat) [34]

Nach oben


Cathrin Bunkelmann
Fachgebiet Modellierung Kognitiver Prozesse
Gebäude MAR
Raum 5011
030 - 314 73557
cognition@tu-berlin.de [35]


Technische Universität Berlin
Fachgebiet Modellierung Kognitiver Prozesse
Institut für Softwaretechnik und Theoretische Informatik
Sekr. MAR 5-3
Marchstr. 23
10587 Berlin
------ Links: ------

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008